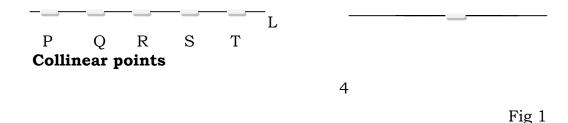
#### Grade 10 Maths

#### UNIT-6

#### PLANE GEOMETRY TEOREMS OF A TRIANGLES

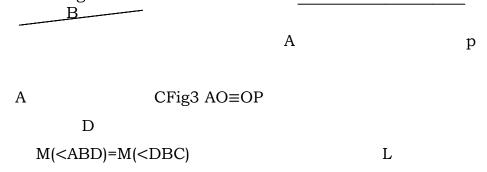
⇒Three or more points that lie on on line are called collinear points

⇒Three or more lines that pass through one point are called concurrent lines.



### Concurrent lines

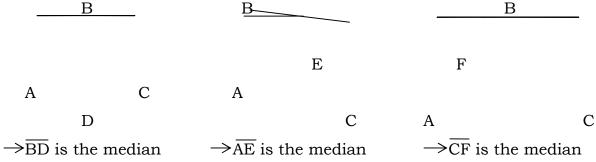
- ⇒Theorems about col linear points and concurrent lines are called incidence theorems.
- $\Rightarrow$ A line that devides an angle in to two congruent angles is called an angle is called an angle bisector of the angle.
- $\Rightarrow$ A line segments that divides a line segment in to two congruent line segments is called bisector of line segments.



 $\therefore$   $\overline{DB}$  is called an angle bisector  $\therefore$  a line L is called bisector of a line segment  $\Rightarrow$  When a bisector of a line segments forms right angle with the line segment then it is called the perpendicular bisector of the line segments. See from fig.3

## <u>Median of a triangle</u>

 $\Rightarrow$ A median an of a triangle is a line segment drawn from an vertex to the mid-point of the opposite side.



Theorem 6.1 (thrm)the medians of a rectangle are concurrent at a point  $\frac{2}{3}$  of the distance from each vertex to the mid point of the opposite side .

## Note

1. AO= 
$$\frac{2}{3}$$
 (AE)  $\Rightarrow$  AO+OE=AE

2. OE=
$$\frac{1}{2}$$
 (AE)  $\Rightarrow \frac{2}{3} + \frac{1}{3} = 1$  full of AE

3. BO=
$$\frac{3}{2}$$
(BG)  $\Rightarrow$  BO+OG=BG

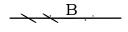
4. OG=
$$\frac{3}{2}$$
 (BG)  $\Rightarrow \frac{2}{3} + \frac{1}{3} = 1$  full of BG

5. 
$$CO = \frac{2}{3}(CE) \Rightarrow CO + OE = CE$$

6. OE=
$$\frac{1}{2}$$
 (CE)  $\Rightarrow \frac{2}{3} + \frac{1}{3} = 1$  full of CE

## **Example** solve the foll.

From the following figure



If AE, BF and CD are medians of a triangle ABC, And

D E  $M(\overline{AE}) = 24cm$  $M(\overline{OF}) = 8cm$ 

A F C  $M(\overline{CO}) = 18cm$ 

a. Then find the length of: a, CD b, OE

Soln: (a) (b)  $AO = \frac{2}{3} (AE)$  (c) OD

 $CO = \frac{2}{3} CD$   $OE = \frac{1}{3} (AE)$   $CO = \frac{1}{3} (CD)$ 

m.b.s by 
$$\frac{3}{2}$$
 we get  $=\frac{1}{3}(24\text{cm})$   $=\frac{1}{3}(15\text{cm})$   $\frac{3}{2}(\text{CO}) = \frac{3}{2}(\frac{2}{3})\text{CD}$   $=\frac{24}{3}\text{cm}$   $=\frac{15}{3}\text{cm}$   $=\frac{15}{3}\text{cm}$   $=\frac{5\text{cm}}{2}$   $=\frac{30}{2}\text{cm}$   $=\frac{30}{2}\text{cm}$   $=\frac{30}{2}\text{cm}$ 

The point of intersection of the medians of the triangle is called the centroid of the triangle

# Altitude of a triangle

- The altitude of a triangle is a line segment drawn from a vertex perpendicular to the opposite or to the opposite side produced.
- AD and CE are

The altitudes of the ∆ABC

## Question

Write the difference between the altitude and median of the given triangle.

- the perpendicular bisectors of the sides of any triangle are concurrent at a point which is equidistance from the vertices of the triangle

AE, BF and CD are the perpendicular bisectors of a ABC

Hence m(AP)=m(BP)=m(CP)

Conceptually If m(AP)=5cm, then m(BP)=5cm

- The point of intersection of the bisectors of the angles of the triangle is called the incentre of the triangle.

Altitude theorem

- the altitude theorem stated discussed there is or only right angled triangle. It relates the length of the altitude to the hypenuse of a right angled triangle, to the lengths of the segments of the hypotenuse.
- the altitude theorem states as:

In right angle triangle ABC with altitude CD to the hypotenuse AB: <u>AD=CD</u>

$$\Longrightarrow$$
(AD)(DB)=(CD)<sup>2</sup> D

C A

# Example A

B C

If BD=4cm and CD 8cm calculate AD

 $sol_{\underline{n}} (CD)(AD) = (BD)^2$ 

 $(8CM) (AD)=(4CM)^2$ 

8ADcm=16cm<sup>2</sup>

 $8ADCM = 16CM^2 = 2CM$ 

8CM 8CM

Exercise from the following right angle triangle. If AC=5cm,AD=4CM, then find a)BD b) BC



 $CD = \sqrt{9cm}$ 

4cm

C A

Sol<sup>n</sup> from△ADC, since <D is right angle then△ADC is right angled triangle. Then

 $(CD)2+(DE)2=(AC)^2$ 

a)  $(AD)(DB)=(CD)^2$  $(4CM)BD=(3CM)^2$  b)  $(BC)^2 + (CA)^2 = (BA)^2$ 

CD<sup>2</sup>=25CM<sup>2</sup>-16CM<sup>2</sup> CD<sup>2</sup>=9CM<sup>2</sup>-6CM<sup>2</sup>-16CM<sup>2</sup>

(4CM)BD=(3CM)

 $(BC)^2 = (BA)^2 = (CA)^2$  $(BC)^2 = (BA)^2 - (CA)^2$ 

 $CD^2 = 9cm^2 4DBcm = 9cm$ 

BC=  $(4+9/4)^2-25$ 

4cm BC=  $\frac{25/4}{2}^{2}-25$ 

CD = 3cm DB = 9/4 cm = 7.5cm

4cm

# Special quadrilateral

| 5. square                                                                                                      |
|----------------------------------------------------------------------------------------------------------------|
| 1. <b>Trapezium:</b> a trapezium is a quadrilateral where only two o the sides are parallel.                   |
| - AB and DC are bases of the trapezium                                                                         |
| - $\overline{\mathrm{AD}}$ and $\overline{\mathrm{BC}}$ are called are called the legs of the trapezium        |
| $\overline{ m AE}$ is called he height of the trapezium                                                        |
| $\Longrightarrow$ If $\overline{AD}$ and $\overline{BC}$ are congruent (equal) then it is isosceles trapezium. |
| AB                                                                                                             |
|                                                                                                                |
|                                                                                                                |
| D C                                                                                                            |
| E                                                                                                              |
| 2. Parallelogram: is e quadrilateral lateral in which both pairs of opposite sides are                         |
| parallel.                                                                                                      |
| $A \longrightarrow B$                                                                                          |
|                                                                                                                |
|                                                                                                                |
|                                                                                                                |
| DC                                                                                                             |
| Exercise write the six (6) properties f parallelograms (a-f) page (241)                                        |
| <b>3.Rectangle</b> : A rectangle is a parallelogram in which one of its angle is right angle (90°)             |
| ie all of the angles are measures 90° each ie 190+90+90+90°)=360°                                              |
| - All rectangles are parallelogram (True/False)                                                                |
| - All parallelograms are rectangle (True/False)                                                                |
| - Draw the figure of rectangle and write the basic properties of a rectangle.                                  |
| 4.Rhombus: A rhombus is a parallelogram which has two congruent adjacent sides.                                |
| - try to sketch the figure of rhombus and write the basic properties of the rhombus                            |
| - All rhombus as are square (True/False)                                                                       |
| - All squares are square (True/False)                                                                          |
|                                                                                                                |
|                                                                                                                |
| 5. Square: A square is a rectangle which has congruent adjacent sides.                                         |
| - square has the properties of a rectangle.                                                                    |

- square has all the properties of a rhombus.

The special quadrilateral are 1. Trapezium 2. parallelogram 3. rectangle 4. rhombus

# More on circle

O' is called cenire of the circle

AB is called Diametre of circle

DC is called the radius of atrcircle

AxC is called an are

**Note** 1 diameter=2radius

- An inscribed angle: an angle whose vertex lies on the circle and whose sides are chords of the circle.

$$M($$



C

- The measures of an angle inscribed in acircle is half the measure of the subtending it.
- 1. An angle inscribed in a semi-circle is a right angle (90°)
- 2. A sem circle is obtuse
- 3. An angle inscribed in an arc greater than a cemi-circle is accute.
- 4. An angle formed by a tangent and chord drawn from the point of the tangency is measured by half the are it intercepts.
- 5. The measures of an angle formed by two chords inter secting in side a circle is half the sum of the measures of the arc subteding the angle and its vertically opposite angle.

$$m(ABC)$$
  $m(ABC)$   $m$ 

b/n 90 &180 Which is accute angle

W/c is obtuse

**Example** see the foll circle if m(<BOD) = 30 and m(CSD)=40 ,find m(ATC).

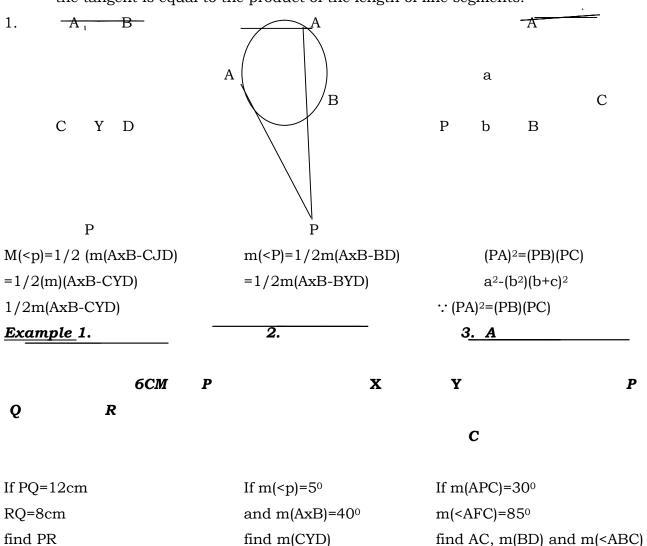
Soln m(BOD) = m(<AOC) = 1/2(ATC) + ( $\overline{BCD}$ )

Hence m(<BOD)=1/2(BSD +ATC) 2(30)=40 +ATC

..M(ATC)=2(30)-40

M(ATC)=60-40=20

- 1. The measures of the angle formed by the lines two chords intersecting out side a circle is half the difference of the measure of the arcs they intercept.
- 2. The measure of an angle formed by a tangent and a secant drown to a circle from a point out side a circle is equal to half the difference of the measures of the intercepted arcs.
- 3. A secant and tangent are drown from a point out side a circle ,then the square of the length of the tangent is equal to the product of the length of line segments.



#### Regular Polygons

Hint  $(PT)^2=(PR)(PQ)$ 

and 4.5cm

- A polygon whose vertices are on a circle is said to be inscribed in a circle the circle is circumscribed about the polygon.
- ⇒ A polygon whose sides are tangent to acircle is said to be circumscribed about the circle.
- $\Rightarrow$  For any n-sided regular polygon.
- a) Appothem a=r cos(1800)

n

b)Side of length (s)= $2r \sin \frac{180^{\circ}}{}$ 

n

c) Perimetre:p=ns=2nr sin<u>1800)</u>

n

d)Area (A)= 
$$\frac{1}{2}$$
 ap= rcos  $\frac{180^{\circ}}{}$ 

n

$$A = \frac{1}{2} nr^2 sin \underline{180^0}$$

n

Note r=radius n=number of sides a=apothem A=Area

Exercise find a)apothem b)length of sides(s) c) perimetre(p) and Area (A) of a regular quadrilateral whose length of radius r=5cm.